产品分类

联系我们

电 话:0532-83812497

邮 箱:info@sd1718.com

当前位置:首页 > 技术文章 > 查看文章
红外测温仪工作原理及应用(一)
2015-01-14

1.概述
  红外测温技术在生产过程中在产品质量控制和监测设备在线故障诊断和安全保护以及节约能源等方面发挥了着重要作用。近20年来非接触红外测温仪在技术上得到迅速发展性能不断完善功能不断增强品种不断增多,适用范围也不断扩大市场占有率逐年增长。比起接触式测温方法红外测温有着响应时间快、非接触、使用安全及使用寿命长等优点。非接触红外测温仪包括便携式、在线式和扫描式三大系列并备有各种选件和计算机软件每一系列中又有各种型号及规格。在不同规格的各种型号测温仪中正确选择红外测温仪型号对用户来说是十分重要的。
  红外检测技术是“九五”国家科技成果重点推广项目红外检测是一种在线监测(不停电)式高科技检测技术它集光电成像技术、计算机技术、图像处理技术于一身通过接收物体发出的红外线(红外辐射)将其热像显示在荧光屏上从而准确判断物体表面的温度分布情况,具有准确、实时、快速等优点。任何物体由于其自身分子的运动不停地向外辐射红外热能从而在物体表面形成一定的温度场俗称“热像”。红外诊断技术正是通过吸收这种红外辐射能量测出设备表面的温度及温度场的分布从而判断设备发热情况。目前应用红外诊技术的测试设备比较多如红外测温仪、红外热电视、红外热像仪等等。像红外热电视、红外热像仪等设备利用热成像技术将这种看不见的“热像”转变成可见光图像使测试效果直观灵敏度高能检测出设备细微的热状态变化准确反映设备内部、外部的发热情况可靠性高对发现设备隐患非常有效。 
  红外诊断技术对电气设备的早期故障缺陷及绝缘性能做出可靠的预测使传统电气设备的预防性试验维修(预防试验是50年代引进前苏联的标准)提高到预知状态检修这也是现代电力企业发展的方向。特别是现在大机组、超高电压的发展对电力系统的可靠运行关系到电网的稳定提出了越来越高的要求。随着现代科学技术不断发展成熟与日益完善利用红外状态监测和诊断技术具有远距离、不接触、不取样、不解体又具有准确、快速、直观等特点实时地在线监测和诊断电气设备大多数故障(几乎可以覆盖所有电气设备各种故障的检测)。它备受国内外电力行业的重视(国外70年代后期普遍应用的一种先进状态检修体制)并得到快速发展。红外检测技术的应用对提高电气设备的可靠性与有效性提高运行经济效益降低维修成本都有很重要的意义。是目前在预知检修领域中普遍推广的一种很好手段又能使维修水平和设备的健康水平上一个台阶。
  采用红外成像检测技术可以对正在运行的设备进行非接触检测拍摄其温度场的分布、测量任何部位的温度值据此对各种外部及内部故障进行诊断具有实时、遥测、直观和定量测温等优点用来检测发电厂、变电所和输电线路的运转设备和带电设备非常方便、有效。
  利用热像仪检测在线电气设备的方法是红外温度记录法。红外温度记录法是工业上用来无损探测检测设备性能和掌握其运行状态的一项新技术。与传统的测温方式(如热电偶、不同熔点的蜡片等放置在被测物表面或体内)相比热像仪可在一定距离内实时、定量、在线检测发热点的温度通过扫描还可以绘出设备在运行中的温度梯度热像图而且灵敏度高不受电磁场干扰便于现场使用。它可以在-20℃~2000℃的宽量程内以0.05℃的高分辨率检测电气设备的热致故障揭示出如导线接头或线夹发热以及电气设备中的局部过热点等等。
带电设备的红外诊断技术是一门新兴的学科。它是利用带电设备的致热效应采用专用设备获取从设备表面发出的红外辐射信息进而判断设备状况和缺陷性质的一门综合技术。
2.红外基础理论
  1672年人们发现太阳光(白光)是由各种颜色的光复合而成同时牛顿做出了单色光在性质上比白色光更简单的著名结论。使用分光棱镜就把太阳光(白光)分解为红、橙、黄、绿、青、蓝、紫等各色单色光。1800年英国物理学家F. W. 赫胥尔从热的观点来研究各种色光时发现了红外线。他在研究各种色光的热量时有意地把暗室的唯一的窗户用暗板堵住并在板上开了一个矩形孔孔内装一个分光棱镜。当太阳光通过棱镜时便被分解为彩色光带并用温度计去测量光带中不同颜色所含的热量。为了与环境温度进行比较赫胥尔用在彩色光带附近放几支作为比较用的温度计来测定周围环境温度。试验中他偶然发现一个奇怪的现象:放在光带红光外的一支温度计比室内其他温度的批示数值高。经过反复试验这个所谓热量最多的高温区总是位于光带最边缘处红光的外面。于是他宣布太阳发出的辐射中除可见光线外还有一种人眼看不见的“热线”这种看不见的“热线”位于红色光外侧叫做红外线。红外线是一种电磁波具有与无线电波及可见光一样的本质红外线的发现是人类对自然认识的一次飞跃对研究、利用和发展红外技术领域开辟了一条全新的广阔道路。
  红外线的波长在0.76~100μm之间按波长的范围可分为近红外、中红外、远红外、极远红外四类它在电磁波连续频谱中的位置是处于无线电波与可见光之间的区域。红外线辐射是自然界存在的一种最为广泛的电磁波辐射它是基于任何物体在常规环境下都会产生自身的分子和原子无规则的运动并不停地辐射出热红外能量分子和原子的运动愈剧烈辐射的能量愈大反之辐射的能量愈小。
  温度在绝对零度以上的物体都会因自身的分子运动而辐射出红外线。通过红外探测器将物体辐射的功率信号转换成电信号后成像装置的输出信号就可以完全一一对应地模拟扫描物体表面温度的空间分布经电子系统处理传至显示屏上得到与物体表面热分布相应的热像图。运用这一方法便能实现对目标进行远距离热状态图像成像和测温并进行分析判断。
  2.1热像仪原理
  红外热像仪是利用红外探测器、光学成像物镜和光机扫描系统(目前先进的焦平面技术则省去了光机扫描系统)接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元上在光学系统和红外探测器之间有一个光机扫描机构(焦平面热像仪无此机构)对被测物体的红外热像进行扫描并聚焦在单元或分光探测器上由探测器将红外辐射能转换成电信号经放大处理、转换或标准视频信号通过电视屏或监测器显示红外热像图。这种热像图与物体表面的热分布场相对应;实质上是被测目标物体各部分红外辐射的热像分布图由于信号非常弱与可见光图像相比缺少层次和立体感因此在实际动作过程中为更有效地判断被测目标的红外热分布场常采用一些辅助措施来增加仪器的实用功能如图像亮度、对比度的控制实标校正伪色彩描绘等技术
  2.2热像仪的发展
  1800年英国物理学家F. W. 赫胥尔发现了红外线从此开辟了人类应用红外技术的广阔道路。在第二次世界大战中德国人用红外变像管作为光电转换器件研制出了主动式夜视仪和红外通信设备为红外技术的发展奠定了基础。
二次世界大战后首先由美国德克萨兰仪器公司经过近一年的探索开发研制的第一代用于军事领域的红外成像装置称之为红外寻视系统(FLIR)它是利用光学机械系统对被测目标的红外辐射扫描。由光子探测器接收两维红外辐射迹象经光电转换及一系列仪器处理形成视频图像信号。这种系统、原始的形式是一种非实时的自动温度分布记录仪后来随着五十年代锑化铟和锗掺汞光子探测器的发展才开始出现高速扫描及实时显示目标热图像的系统。
  六十年代早期瑞典AGA公司研制成功第二代红外成像装置它是在红外寻视系统的基础上以增加了测温的功能称之为红外热像仪。
  开始由于保密的原因在发达的国家中也仅限于军用投入应用的热成像装置可的黑夜或浓厚幕云雾中探测对方的目标探测伪装的目标和高速运动的目标。由于有国家经费的支撑投入的研制开发费用很大仪器的成本也很高。以后考虑到在工业生产发展中的实用性结合工业红外探测的特点采取压缩仪器造价。降低生产成本并根据民用的要求通过减小扫描速度来提高图像分辨率等措施逐渐发展到民用领域。
  六十年代中期AGA公司研制出第一套工业用的实时成像系统(THV)该系统由液氮致冷110V电源电压供电重约35公斤因此使用中便携性很差经过对仪器的几代改进1986年研制的红外热像仪已无需液氮或高压气而以热电方式致冷可用电池供电;1988年推出的全功能热像仪将温度的测量、修改、分析、图像采集、存储合于一体重量小于7公斤仪器的功能、精度和可靠性都得到了显著的提高。
  九十年代中期美国FSI公司首先研制成功由军用技术(FPA)转民用并商品化的新一红外热像仪(CCD)属焦平面阵列式结构的一种凝成像装置技术功能更加先进现场测温时只需对准目标摄取图像并将上述信息存储到机内的PC卡上即完成全部操作各种参数的设定可回到室内用软件进行修改和分析数据最后直接得出检测报告由于技术的改进和结构的改变取代了复杂的机械扫描仪器重量已小于二公斤使用中如同手持摄像机一样单手即可方便地操作。
  如今红外热成像系统已经在电力、消防、石化以及医疗等领域得到了广泛的应用。红外热像仪在世界经济的发展中正发挥着举足轻重的作用。
  2.3热像仪分类
  红外热像仪一般分光机扫描成像系统和非扫描成像系统。光机扫描成像系统采用单元或多元(元数有8、10、16、23、48、55、60、120、180甚至更多)光电导或光伏红外探测器用单元探测器时速度慢主要是帧幅响应的时间不够快多元阵列探测器可做成高速实时热像仪。非扫描成像的热像仪如近几年推出的阵列式凝视成像的焦平面热像仪属新一代的热成像装置在性能上大大优于光机扫描式热像仪有逐步取代光机扫描式热像仪的趋势。其关键技术是探测器由单片集成电路组成被测目标的整个视野都聚焦在上面并且图像更加清晰使用更加方便,漆膜测厚仪仪器非常小巧轻便同时具有自动调焦图像冻结连续放大点温、线温、等温和语音注释图像等功能仪器采用PC卡存储容量可高达500幅图像。
  红外热电视是红外热像仪的一种。红外热电视是通过热释电摄像管(PEV)接受被测目标物体的表面红外辐射并把目标内热辐射分布的不可见热图像转变成视频信号因此热释电摄像管是红外热电视的光键器件它是一种实时成像宽谱成像(对3~5μm及8~14μm有较好的频率响应)具有中等分辨率的热成像器件主要由透镜、靶面和电子枪三部分组成。其技术功能是将被测目标的红外辐射线通过透镜聚焦成像到热释电摄像管采用常温热电视探测器和电子束扫描及靶面成像技术来实现的。热像仪的主要参数有:
  2.3.1工作波段;工作波段是指红外热像仪中所选择的红外探测器的响应波长区域一般是3~5μm或8~12μm。
  2.3.2探测器类型;探测器类型是指使用的一种红外器件。是采用单元或多元(元数8、10、16、23、48、55、60、120、180等)光电导或光伏红外探测器其采用的元素有硫化铅(PbS)、硒化铅(PnSe)、碲化铟(InSb)、碲镉汞(HgCdTe)、碲锡铅(PbSnTe)、锗掺杂(Ge:X)和硅掺杂(Si:X)等。
  2.3.3扫描制式;一般为我国标准电视制式PAL制式。
  2.3.4显示方式;指屏幕显示是黑白显示还是伪彩显示。
  2.3.5温度测定范围;指测定温度的最低限与最高限的温度值的范围。
  2.3.6测温准确度;指红外热像仪测温的最大误差与仪器量程之比的百分数。
  2.3.7最大工作时间;红外热像仪允许连续的工作时间。

相关推荐:

上一篇:指针万用表与数字万用表的比较

下一篇:示波表的应用——对于防爆公司来说,测试工具的精度至关重要